
Resource Sharing among Prioritized Real-Time
Applications on Multiprocessors∗ †

Sara Afshar, Nima Khalilzad, Farhang Nemati, Thomas Nolte
Email: sara.afshar@mdh.se

MRTC, Mälardalen University, Sweden

ABSTRACT
In this paper, we propose a new protocol for handling resource
sharing among prioritized real-time applications composed on
a multiprocessor platform. We propose an optimal priority
assignment algorithm which assigns unique priorities to the
applications based on information in their interfaces. We have
performed experimental evaluations to compare the proposed
protocol (called MSOS-Priority) to the current state of the art
locking protocols under multiprocessor partitioned scheduling,
i.e., MPCP, MSRP, FMLP, MSOS, and OMLP. The evaluations
show that MSOS-Priority mostly performs significantly better than
alternative approaches.

1. INTRODUCTION
The emergence of multi-core platforms and the fact that they are
to be the defacto processors has attracted a lot of interest in the re-
search community regarding multiprocessor software analysis and
runtime policies, protocols and techniques.

The industry can benefit from multi-core platforms as these plat-
forms facilitate hardware consolidation by co-executing multiple
real-time applications on a shared multi-core platform. The appli-
cations may have been developed assuming the existence of various
techniques, e.g., relying on a particular scheduling policy. The ap-
plications may share mutually exclusive resources. On the other
hand, in industry, large and complex systems are commonly di-
vided into several subsystems (components) which are developed
in parallel and in isolation. The subsystems will eventually be inte-
grated and co-execute on a multi-core platform. Hence, composi-
tional analysis, i.e., analysis that enables inferring properties of the
integrated system from properties of its building components, can
facilitate the integration phase.

Two main approaches for scheduling real-time systems on multi-
cores exist; global and partitioned scheduling [1, 2]. Under global
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scheduling, e.g., Global Earliest Deadline First (G-EDF), tasks are
scheduled by a single scheduler and each task can be executed on
any processor, i.e., migration of tasks among processors is per-
mitted. Under partitioned scheduling, tasks are statically assigned
to processors and tasks within each processor are scheduled by a
uniprocessor scheduling protocol, e.g., Rate Monotonic (RM) or
Earliest Deadline First (EDF). In this paper we focus on partitioned
scheduling where tasks of each application are allocated on a dedi-
cated processor.

In our previous work [3] we proposed a synchronization protocol,
called Multiprocessor Synchronization protocol for real-time
Open Systems (MSOS), for handling resource sharing among
independently-developed real-time applications on multi-core
platforms. In an open system, applications can enter and exit
during run-time. The schedulability analysis of each application
is performed in isolation and its demand for global resources is
summarized in a set of requirements which can be used for the
global scheduling when co-executing with other applications.
Validating these requirements is much easier than performing
the whole schedulability analysis. Thus, a run-time admission
control program would perform much better when introducing
a new application or changing an existing one. The protocol
assumes that each real-time application is allocated on a dedicated
core. Furthermore, MSOS assumes that the applications have no
assigned priority and thus access to shared resources is granted in
a FIFO manner. However, to increase schedulability of real-time
systems priority assignment is a common solution. One of the
objectives of this paper is to extend MSOS to be applicable to
prioritized applications accessing mutually exclusive resources.

1.1 Contributions
The main contributions of this paper are as follows: (1) We ex-
tend MSOS such that it supports resource sharing among priori-
tized real-time applications allocated on a shared multi-core plat-
form. For a given real-time application we derive an interface
which includes parametric requirements. To distinguish between
the two, i.e., the existing MSOS and the new MSOS, we refer them
as MSOS-FIFO and MSOS-Priority respectively. (2) We propose
an optimal priority assignment algorithm which assigns unique pri-
orities to the applications based on the information specified in
their interfaces regarding shared resources. (3) We have performed
several experiments to evaluate the performance of MSOS-Priority
against MSOS-FIFO as well as the state of the art locking protocols
for partitioned scheduling, i.e., MPCP, MSRP, FMLP, and OMLP.

1.2 Related Work
In this section we present a non-exhaustive set of most related syn-
chronization protocols for managing access to mutually exclusive



resources on multiprocessors. We specially focus on protocols un-
der partitioned scheduling algorithms.

The existing synchronization protocols can be categorized as
suspend-based and spin-based protocols. In suspend-based proto-
cols a task requesting a resource that is shared across processors
suspends if the resource is locked by another task. In spin-based
protocols a task requesting a locked resource keeps the processor
and performs spin-lock (busy wait).

MPCP: Rajkumar presented MPCP (Multiprocessor Priority
Ceiling Protocol) [4] for shared memory multiprocessors hence
allowing for synchronization of tasks sharing mutually exclusive
resources using partitioned FPS (Fixed Priority Scheduling).
MPCP is a suspend-based protocol where tasks waiting for a
global resource suspend. A global resource is a resource shared
among tasks across processors. Lakshmanan et al. [5] extended a
spin-based alternative of MPCP.

MSRP: Gai et al. [6] presented MSRP (Multiprocessor Stack-
based Resource allocation Protocol), which is a spin-based
synchronization protocol. Under MSRP, tasks blocked on a global
resource perform busy wait. A task inside a global critical section
(gcs) executes non-preemptively.

FMLP: Block et al. [7] presented FMLP (Flexible Multiproces-
sor Locking Protocol) which is a synchronization protocol for
multiprocessors that can be applied to both partitioned and global
scheduling algorithms, i.e., P-EDF and G-EDF. Brandenburg and
Anderson in [8] extended partitioned FMLP to the fixed priority
scheduling policy. Under partitioned FMLP global resources are
categorized into long and short resources. Tasks blocked on long
resources suspend while tasks blocked on short resources perform
busy wait. In an evaluation of partitioned FMLP [9], the authors
differentiate between long FMLP and short FMLP where all
global resources are only long and only short respectively. Thus,
long FMLP and short FMLP are suspend-based and spin-based
synchronization protocols respectively. In both alternatives the
tasks accessing a global resource execute non-preemptively.

OMLP: Brandenburg and Anderson [10] proposed a new suspend-
based locking protocol, called OMLP (O(m) Locking Protocol).
OMLP is asymptotically optimal (i.e. the total blocking for any
task set is a constant factor of blocking that cannot be avoided for
some task sets in the worst case) under the suspension-oblivious
schedulability analysis where the suspended tasks are assumed to
occupy processors and thus blocking is counted as demand. Under
partitioned OMLP, a task accessing a global resource cannot be
preempted by any task until it releases the resource.

MSOS: Recently we presented MSOS [3] which is a suspend-
based synchronization protocol for handling resource sharing
among real-time applications in an open system on multi-core plat-
forms. MSOS-FIFO assumes that the applications are not assigned
any priority and thus applications waiting for a global resource
are enqueued in an associated global FIFO-based queue. In this
paper we present an alternative of MSOS, called MSOS-Priority to
be applicable to prioritized applications when accessing mutually
exclusive resources.

In the context of priority assignment, Audsley’s Optimal Priority
Assignment (OPA) [11] for priority assignment in uniprocessors is
the most related and similar to our priority assignment algorithm.
Davis and Burns [12] have shown that OPA can be extended to
fixed priority multiprocessor global scheduling if the schedulabil-

ity of a task does not depend on the priority ordering among higher
priority or lower priority tasks. Our proposed algorithm is a gener-
alization of OPA which can be applicable to assigning priorities to
applications based on their requirements.

2. TASK AND PLATFORM MODEL
We assume that the multi-core platform is composed of identical,
unit-capacity processors with shared memory. Each core contains a
different real-time application Ak(ρAk, Ik) where ρAk is the pri-
ority of application Ak. Application Ak is represented by an inter-
face Ik which abstracts the information regarding shared resources.
Applications may use different scheduling policies. In this paper
we focus on schedulability analysis of fixed priority scheduling.
From the scheduling point of view our approach can be classified
as partitioned scheduling where each application can be seen as a
partition (a set of tasks) allocated on one processor.

An application consists of a task set denoted by τAk which consists
of n sporadic tasks, τi(Ti, Ci, ρi, {Csi,q,p}) where Ti denotes the
minimum inter-arrival time (period) between two successive jobs
of task τi with worst-case execution time Ci and ρi as its priority.
For the sake of simplicity we assume that the tasks have implicit
deadlines, i.e., the relative deadline of any job of τi is equal to Ti.
A task, τh, has a higher priority than another task, τl, if ρh > ρl.
For the sake of simplicity we also assume that each task as well
as each application has a unique priority. The tasks in applica-
tion Ak share a set of resources, RAk , which are protected using
semaphores. The set of shared resources RAk consists of two sub-
sets of different types of resources; local and global resources. A
local resource is only shared by tasks in the same application while
a global resource is shared by tasks from more than one applica-
tion. The sets of local and global resources accessed by tasks in
application Ak are denoted by RLAk

and RGAk
respectively. The set

of critical sections, in which task τi requests resources in RAk is
denoted by {Csi,q,p}, where Csi,q,p is the worst-case execution
time of the pth critical section of task τi in which the task locks
resource Rq . We denote Csi,q as the worst-case execution time of
the longest critical section in which τi requests Rq . In the context
of requesting resources, when it is said that a task τi is granted ac-
cess to a resource Rq it means that Rq is available to τi, however
it does not necessarily mean that τi has started using Rq unless we
concretely state that τi is accessing Rq which means that τi has
entered its critical section. Furthermore, when we state that access
to Rq is granted to τi it implies that Rq is locked by τi. Note that,
RAk is the set of resources such as {Rq1 , Rq2 , ...} that tasks inside
applicationAk share. In this paper, we focus on non-nested critical
sections. A job of task τi, is specified by Ji.

3. MSOS-FIFO FOR NON-PRIORITIZED
REAL-TIME APPLICATIONS

In this section we briefly present an overview of our synchroniza-
tion protocol MSOS-FIFO [3] which originally was developed for
non-prioritized real-time applications.

3.1 Definitions

3.1.1 Resource Hold Time (RHT)
The RHT of a global resource Rq by task τi in application Ak de-
noted by RHTq,k,i, is the maximum time interval starting from the
time instant τi locks Rq and ending at the time instant τi releases
Rq . Thus, the resource hold time of a global resource, Rq , by ap-
plication Ak denoted by RHTq,k, is as follows:



RHTq,k = max
τi ∈ τq,k

{RHTq,k,i} (1)

where τq,k is the set of tasks in application Ak sharing Rq .

3.1.2 Maximum Resource Wait Time
The maximum resource wait time, denoted by RWTq,k for a global
resource Rq in application Ak, is the worst-case time that any task
τi within Ak may wait for other applications on Rq whenever τi
requests Rq . Under MSOS-FIFO, the applications waiting for a
global resource are enqueued in an associated FIFO queue. Hence
the worst case occurs when all tasks within other applications have
requestedRq before τi. As we will see (Section 4), this assumption
is not valid for the case when the applications are prioritized.

3.1.3 Application Interface
An application, Ak, is represented by an interface Ik(Qk, Zk)
where Qk represents a set of requirements. An application Ak
is schedulable if all the requirements in Qk are satisfied. A
requirement in Qk is a linear inequality which only depends on
the maximum resource wait times of one or more global resources,
e.g., 2RWT1,k + 3RWT3,k ≤ 18. The requirements of each
application are extracted from its schedulability analysis in isola-
tion. Zk in the interface represents a set; Zk = {. . . , Zq,k, . . .},
where Zq,k, called Maximum Application Locking Time (MALT),
represents the maximum duration of time that any task τx in any
other application Al (l 6= k) may be delayed by tasks in Ak
whenever τx requests Rq .

3.2 General Description of MSOS-FIFO
Access to the local resources is handled by a uniprocessor syn-
chronization protocol, e.g., PCP or SRP. Under MSOS-FIFO each
global resource is associated with a global FIFO queue in which
applications requesting the resource are enqueued. Within an ap-
plication the tasks requesting the global resource are enqueued in a
local queue; either priority-based or FIFO-based queues. Per each
request to a global resource in the application a placeholder for the
application is added to the global queue of the resource. When the
resource becomes available to the application, i.e., a placeholder
of the application is at the head of the global FIFO, the eligible
task, e.g., at the top of local FIFO queue, within the application is
granted access to the resource.

To decrease interference of applications, they have to release the
locked global resources as soon as possible. In other words, the
length of resource hold times of global resources have to be as
short as possible. This means that a task τi that is granted ac-
cess to a global resource Rq , should not be delayed by any other
task τj , unless τj holds another global resource. To achieve this,
the priority of any task τi within an application Ak requesting a
global resource Rq is increased immediately to ρi + ρmax(Ak),
where ρmax(Ak) = max {ρi|τi ∈ τAk}. Boosting the priority of
τi when it is granted access to a global resource will guarantee that
τi can only be delayed or preempted by higher priority tasks exe-
cuting within a gcs. Thus, the RHT of a global resource Rq by a
task τi is computed as follows:

RHTq,k,i = Csi,q +Hi,q,k (2)

where Hi,q,k =
∑

∀τj∈τAk
, ρi<ρj

∧ Rl∈RG
Ak

, l 6= q

Csj,l.

An application Al can delay another application Ak on a global
resource Rq up to Zq,l time units whenever any task within Ak re-

quests Rq . The worst-case waiting time RWTq,k of Ak to wait for
Rq whenever any of its tasks requests Rq is calculated as follows:

RWTq,k =
∑

Al 6=Ak

Zq,l. (3)

In [3] we derived the calculation of Zq,k of a global resource Rq
for an application Ak, as follows:

for FIFO-based local queues:

Zq,k =
∑

τi ∈ τq,k

RHTq,k,i (4)

for Priority-based local queues:

Zq,k = |τq,k| max
τi ∈ τq,k

{RHTq,k,i} (5)

where |τq,k| is the number of tasks in Ak sharing Rq .

Note that, the maximum blocking time on Rq that tasks in Ak can
introduce to any task, τx, in other applications is when all tasks in
Ak request Rq earlier than τx. This means that the number of Ak’s
placeholders in Rq’s FIFO queue is equal to the number of tasks in
Ak that share Rq . This results in |τq,k| times as it can be seen in
Equation 5.

4. MSOS-PRIORITY (MSOS FOR PRIORI-
TIZED REAL-TIME APPLICATIONS)

In this section we present MSOS-Priority for real-time applications
with different levels of priorities. The general idea is to prioritize
the applications on accessing mutually exclusive global resources.
To handle resource access the global queues have to be priority-
based. When a global resource becomes available, the highest pri-
ority application in the associated global queue is eligible to use
the resource. Within an application the tasks requesting a global
queue are enqueued in either a priority-based or a FIFO-based local
queue. When the highest priority application is granted access to a
global resource, the eligible task within the application is granted
access to the resource. If multiple requested global resources be-
come available for an application they are accessed in the priority
order of their requesting tasks within the application.

A disadvantage argued about spin-based protocols is that the
tasks waiting on global resources perform busy wait and hence
waste processor time. However, it has been shown [13] that
cache-related preemption overhead, depending on the working
set size (WSS) of jobs (WSS of a job is the amount of memory
that the job needs during its execution) can be significantly large.
Thus, performing busy wait in spin-based protocols in some
cases benefits the schedulability as they decrease preemptions
comparing to suspend-based protocols. As our experimental
evaluations show, the larger preemption overheads generally
decrease the performance of suspend-based protocols significantly.
However, as shown by results of our experiments, MSOS-Priority
almost always outperforms all other suspend-based protocols.
Furthermore, in many cases MSOS-Priority performs better than
spin-based protocols even if the preemption overhead is relatively
high.

Under MSOS-FIFO, a lower priority task τl executing within a gcs
can be preempted by another higher priority task τh within a gcs if
they are accessing different resources. This increases the number
of preemptions which adds up the preemption overhead to gcs es
and thus making RHT’s longer. To avoid this, we modify this rule



in MSOS-Priority to reduce preemptions. To achieve this the pri-
ority of a task τi accessing a global resource Rq has to be boosted
enough that no other task, even those that are granted access to
other global resources can preempt τi.

4.1 Request Rules
Rule 1: Whenever a task τi in an application Ak is granted ac-
cess to a global resource Rq the priority of τi is boosted to ρi +
ρmax(Ak). This ensures that if multiple global resources become
available to Ak, they are accessed in the order of priorities of tasks
requesting them. However, as soon as τi accesses Rq , i.e., starts
using Rq , its priority is further boosted to 2 ρmax(Ak) to avoid
preemption by other higher priority tasks that are granted access
to other global resources. This guarantees continued access to a
global resource.

Rule 2: IfRq is not locked when τi requests it, τi is granted access
to Rq . If Rq is locked, Ak is added to the global priority-based
queue of Rq if Ak is not already in the queue. τi is also added to
the local queue of Rq and suspends.

Rule 3: At the time Rq becomes available to Ak the eligible task
within the local queue of Rq is granted access to Rq .

Rule 4: When τi releases Rq , if there is no more tasks in Ak re-
questing Rq , i.e., the local queue of Rq in Ak is empty, Ak will
be removed from the global queue, otherwise Ak will remain in
the queue. The resource becomes available to the highest priority
application in Rq’s global queue.

5. SCHEDULABILITY ANALYSIS UNDER
MSOS-PRIORITY

In this section we derive the schedulability analysis of MSOS-
Priority for prioritized applications. Furthermore we describe
extraction of interfaces of such applications.

5.1 Computing Resource Hold Times
Similar to Lemma 1 in [3], it can be shown that whenever a task
τi is granted access to a global resource Rq , it can be delayed by
at most one gcs per each higher priority task τj where τj uses a
global resource other than Rq . However, once τi starts using Rq ,
no task can preempt it (Rule 1). This avoids preemptions of a task
while executing within a gcs.

On the other hand, once a lower priority task τl starts using a global
resource Rs before τi is granted access to Rq , τl will delay τi as
long as τl is using Rs because τl cannot be preempted (Rule 1).
It is easy to see that τi will not anymore be delayed by lower pri-
ority tasks that are granted access to global resources other than
Rq; whenever τi is granted access to a global resource Rq , in the
worst-case it can be delayed for duration of the largest gcs among
all lower priority tasks in which they share global resources other
than Rq .

Thus RHTq,k,i is computed as follows:

RHTq,k,i = Csi,q +Hi,q,k + max
∀τl∈τAk

, ρi>ρl

∧ Rs∈RG
Ak

, s 6= q

{Csl,s}. (6)

5.2 Blocking Times under MSOS-Priority
Under MSOS-Priority, by blocking time we mean delays that any
task τi may incur from local lower priority tasks and as well as
from other applications due to mutually exclusive resources in the

system. Local tasks of τi are the tasks that belong to the same
application as τi.

Similar to MSOS-FIFO, there are three possible blocking terms that
a task τi may incur. The first and second terms are blocking in-
curred from the local tasks and are calculated the same way as for
MSOS-FIFO [3]. Hence, because of space limitation we skip re-
peating explanation about how to derive the calculations of the two
first blocking terms shown in Equations 7 and 8 respectively. The
third blocking term is the delay incurred from other applications
and is calculated in a totally different way from that in MSOS-
FIFO. The blocking terms are as follows:

5.2.1 Local blocking due to local resources, denoted
by Bi,1

This caters for the upper bound for the total blocking time that τi
incurs from lower priority tasks using local resources and is calcu-
lated as follows:

Bi,1 =

min {nGi + 1,
∑
ρj<ρi

dTi/TjenLj (τi)} max
ρj<ρi

∧ Rl∈RL
Ak

∧ ρi≤ceil(Rl)

{Csj,l} (7)

where ceil(Rl) = max {ρi| τi ∈ τl,k}, nGi is the number of
gcs es of τi (i.e. the number of τi’s requests on global resources),
and nLj (τi) is the number of critical sections in which τj requests
local resources with ceiling higher than the priority of τi.

5.2.2 Local blocking due to global resources,
denoted by Bi,2

This is the upper bound for the maximum blocking time that τi
incurs from lower priority tasks using global resources and can be
calculated as follows:

Bi,2 =∑
ρj<ρi

∧ {τi,τj} ⊆ τAk

min {nGi + 1, dTi/TjenGj } max
Rq∈RG

Ak

{Csj,q}. (8)

Equation 8 contains all the possible delay introduced to the exe-
cution of task τi from all gcs es of lower priority tasks including
gcs es in which they share a global resource with τi. Task τi incurs
this type of blocking because of priority boosting of lower priority
tasks which are granted access to global resources.

5.2.3 Remote blocking, denoted by Bi,3
An application Ak may introduce different values of remote block-
ing times to tasks in other applications. We clarify this issue by
means of an example:
Example 1: Suppose that a task τx in an application Al requests a
global resource Rq which is already locked by a task within appli-
cation Ak. In this case Al will be added to the global queue of Rq
if the queue does not already contain Ak (Rule 2). If Ak has a pri-
ority lower than that of Al, after Ak releases Rq it cannot lock Rq
anymore as long as Al is in the global queue, i.e., as long as there
are more tasks in Al requesting Rq . On the other hand if Ak has a
higher priority thanAl, beforeAl is granted access toRq , it will be
blocked by Ak on Rq as long as Ak is in the global queue, i.e., as
long as there are tasks in Ak requesting Rq . In this case the maxi-
mum delay that τx incurs from Ak during τx’s period is a function
of the maximum number of requests from Ak to Rq during Ti.

Thus the amount of remote blocking introduced by Ak to any task



τx in any other application Al depends on: (i) if Ak has a lower or
higher priority than Al, (ii) the period of τx.

LEMMA 1. Under MSOS-Priority, whenever any task τi
in an application Ak requests a global resource Rq , only one
lower priority application can block τi; this delay is at most
maxρAk>ρAl{RHTq,l} time units.

PROOF. At the time when τi in Ak requests Rq , if a lower pri-
ority application Al has already locked Rq , it will delay Ak for
at most RHTq,l time units. Since access to global resources is
granted to applications based on their priorities, afterRq is released
by Al no more lower priority applications will have a chance to ac-
cess Rq before Ak.

Whenever any task τi in Ak requests a global resource Rq , it may
be delayed by multiple jobs of each task within a higher priority
application that request Rq . All these jobs requesting Rq will be
granted access to Rq before τi. The maximum delay that τi incurs
from these jobs in any time interval t is a function of the maximum
number of them executing during t.

Definition 1. Maximum Application Locking Time (MALT),
denoted by Zq,k(t), represents the maximum delay any task τx
in any lower priority application Al may incur from tasks in Ak
during time interval t, each time τx requests resource Rq .

In order to calculate the total execution of all critical sections of
all tasks in application Ak in which they use global resource Rq
during time interval t, we first need to calculate the total execu-
tion (workload) of all critical sections of each individual task inAk
in which it requests Rq during t. The maximum number of jobs
generated by task τj during time interval t equals d t

Tj
e + 1. On

the other hand, whenever a job Jj of τj locks Rq it holds Rq for
at most RHTq,k,j time units. Jj may lock Rq at most nGj,q times
where nGj,q is the maximum number of requests to Rq issued by
any job of τj . Thus, the total workload of all critical sections of τj
locking Rq during time interval t is denoted by Wj(t, Rq) and is
computed as follows:

Wj(t, Rq) = (d t
Tj
e+ 1) nGj,q RHTq,k,j . (9)

Now we can compute the maximum application locking time
Zq,k(t) that is introduced by tasks in Ak to any task sharing global
resource Rq in any lower priority application:

Zq,k(t) =
∑

τj ∈ τq,k

Wj(t, Rq). (10)

Equation 10 can be computed in isolation and without requiring any
information from other applications because the only variable is t
and other parameters, e.g., RHTq,k,j , are constants which means
they are calculated using only local information. Thus, Zq,k(t)
remains as a function of only t.

Definition 2. The Maximum Resource Wait Time (RWT) for a
global resource Rq incurred by task τi in application Ak, denoted
by RWTq,k,i(t), is the maximum duration of time that τi may wait
for remote applications on resource Rq during any time interval t.

A RWT under MSOS-Priority, considering delays from lower
priority applications (Lemma 1) and higher priority applications
(Equation 10), can be calculated as follows:

RWTq,k,i(t) =
∑

ρAk<ρAl

Zq,l(t) + nGi,q max
ρAk>ρAl

{RHTq,l}. (11)

Under MSOS-FIFO, a RWT for a global resource is a constant
value which is the same for any task sharing the resource. How-
ever, a RWT under MSOS-Priority is a function of time interval t
and may differ for different tasks.

Computing Remote Blocking: Equation 11 can be used to com-
pute remote blockingBi,3 for task τi. Based on Lemma 1 the max-
imum delay introduced by lower priority applications on a global
resource Rq to any task requesting Rq is the same for all the tasks.
Thus, regardless of the type of the local queues (FIFO-based or
priority-based) the second term in the computation of RWTq,k,i,
shown in Equation 11, is the same for all tasks requesting Rq . The
first term is also independent of the type of local queues as the total
interference from higher priority applications during the period of
each task is the same for both types of local queues. Hence, despite
of the type of local queues, Bi,3 can be calculated as follows:

Bi,3 =
∑

∀Rq∈RG
Ak

∧ τi ∈ τq,k

RWTq,k,i. (12)

5.3 Interface
The interface of an application Ak has to contain information re-
garding global resources which is required for schedulability anal-
ysis when the applications co-execute on a multi-core platform. It
has to contain the requirements that have to be satisfied forAk to be
schedulable. Furthermore, the interface has to provide information
required by other applications sharing resources with Ak.

Looking at Equation 11, the calculation of the RWT of a task τi,
in application Ak, for a global resource Rq , requires MALT’s,
e.g., Zq,h(t), from higher priority applications as well as RHT’s,
e.g., RHTq,l, from lower priority applications. This means that to
be able to calculate the RWT’s, the interfaces of the applications
have to provide both RHT’s and MALT’s for global resources they
share. Thus the interface of an application Ak is represented by
Ik(Qk, Zk, RHT ) where Qk represents a set of requirements,
Zk is a set of MALT’s and a MALT is a function of time interval
t. MALT’s in the interface of application Ak are needed for
calculating the total delay introduced by Ak to lower priority
applications sharing resources with Ak. RHT in the interface is a
set of RHT’s of global resources shared by application Ak. RHT’s
are needed for calculating the total delay introduced by Ak to
higher priority applications.

5.3.1 Extracting the Requirements
The requirements in the interface of an application under MSOS-
Priority are extracted similar to MSOS-FIFO [3]. The difference
is that RWT’s under MSOS-Priority may have different value for
each task.

Starting from the schedulability condition of τi, the maximum
value of blocking time Bmaxi that τi can tolerate without missing
its deadline can be calculated as follows:

τi is schedulable using the fixed priority scheduling policy if the
following statement holds:

0 < ∃t ≤ Ti rbfFP(i, t) ≤ t, (13)



where rbfFP(i, t) denotes request bound function of τi which com-
putes the maximum cumulative execution requests that could be
generated from the time that τi is released up to time t, and is com-
puted as follows:

rbfFP(i, t) = Ci +Bi +
∑
ρi<ρj

(dt/TjeCj). (14)

By substituting Bi by Bmaxi in Equations 13 and 14, Bmaxi can be
calculated as follows:

Bmaxi = max
0<t≤Ti

(t− (Ci +
∑
ρi<ρj

(dt/TjeCj))). (15)

The total blocking of task τi is the summation of three blocking
terms calculated in Section 5.2:

Bi = Bi,1 +Bi,2 +Bi,3. (16)

Since Bi,1 and Bi,2 totally depend on internal factors, i.e., the pa-
rameters from the application that τi belongs to, they are consid-
ered as constant values, i.e., they depend on only internal factors of
τi’s application. Thus, Equation 16 can be rewritten as follows:

Bi = γi +
∑

∀Rq∈RG
Ak

∧ τi ∈ τq,k

RWTq,k,i (17)

where γi = Bi,1 +Bi,2.

Equation 17 shows that the total blocking time of task τi is a func-
tion of maximum resource wait times of τi for the global resources
accessed by τi. With the achieved Bmaxi and Equation 17 a re-
quirement can be extracted:

γi +
∑

∀Rq∈RG
Ak

∧ τi ∈ τq,k

RWTq,k,i ≤ Bmaxi

(18)

or ∑
∀Rq∈RG

Ak
∧ τi ∈ τq,k

RWTq,k,i ≤ Bmaxi − γi
(19)

5.3.2 Global Schedulability Test
The schedulability of each application is tested by validating its
requirements. Any application Ak is schedulable if all its require-
ments in Qk are satisfied. Validating the requirements in Qk re-
quires maximum resource wait times, e.g., RWTq,k,i of global re-
sources accessed by tasks within Ak which are calculated using
Equation 11.

One can see that most of the calculations in the schedulability anal-
ysis of applications can be performed off-line and in isolation. The
global schedulability analysis remains as testing a set of require-
ments which are in form of linear inequalities. This makes MSOS
an appropriate synchronization protocol for open systems on multi-
cores where applications can enter during run-time. An admission
control program can easily test the schedulability of the system by
revalidating the requirements in the interfaces.

As shown in Section 5.3.1, in an application each task sharing
global resources produces one requirement, i.e., the number of re-
quirements in the application’s interface equals to the number of
its tasks sharing global resources. In the worst-case all tasks in
all applications share global resources. The global schedulability
test requires that all requirements in all applications are validated.
Thus, given that Bmaxi and γi are calculated in advance, the com-
plexity of an interface-based admission test is of O(m× n) where

m is the number of applications and n is the number of tasks per
application.

6. OPTIMAL ALGORITHM FOR ASSIGN-
ING PRIORITIES TO APPLICATIONS

MSOS-Priority has the potential to increase the schedulability if
appropriate priorities are assigned to the applications. In this sec-
tion, to assign unique priorities to the applications, we propose an
optimal algorithm similar to the algorithm presented by Davis and
Burns [12]. The algorithm is based on the interface-based schedu-
lability test which only requires information in the interfaces. The
algorithm is optimal in the sense that if it fails to assign priorities
to applications, any hypothetically optimal algorithm will also fail.
The pseudo code of the algorithm is shown in Figure 1.

Figure 1: The priority assignment algorithm

Initially all applications are assigned lowest priority, i.e., 0 (Line 3).
The algorithm tries to, in an iterative way, increase the priority
of applications. In each stage it leaves the applications that are
schedulable (Line 10) and increases the priority of not schedulable
applications (the for-loop in Line 18). The priority of all unschedu-
lable applications is increased by the number of the schedulable
applications in the current stage (Line 19). If there are more than
one schedulable applications in the current stage, their priorities
are increased in a way that each application gets a unique prior-
ity; the first application’s priority is increased by 0, the second’s
is increased by 1, the third’s is increased by 2, etc (the for-loop in
Line 22). When testing the schedulability of an application Ak, the
algorithm assumes that all the applications that have the same pri-
ority as Ak are higher priority applications. This assumption helps
to test if Ak can tolerate all the remaining applications if they get
a higher priority than Ak. Thus, when calculating RWT’s based
on Equation 11 the algorithm changes condition ρAk < ρAl in
the first term to ρAk ≤ ρAl. Figure 2 illustrates an example of
the algorithm. In the example shown in Figure 2, there are four
applications sharing resources. The algorithm succeeds to assign



Figure 2: Illustrative example for the priority assignment algo-
rithm

priorities to them in three stages. First the algorithm gives the low-
est priority to them, i.e., ρAi = 0 for each application. In this stage
the algorithm realizes that applications A1 and A3 are schedulable
but A2 and A4 are not schedulable, thus the priority of A2 and A4

are increased by 2 which is the number of schedulable applications,
i.e., A1 and A3. Both A1 and A3 are schedulable, hence to assign
unique priorities, the algorithm increases the priority of A1 and A3

by 0 and 1 respectively. Please notice that increasing the priority
of the schedulable applications can be done in any order since their
schedulability has been tested assuming that all the other ones have
higher priority. Thus the order in which the priorities of these ap-
plications are increased will not make any of them unschedulable.
In the second stage, only applications A2 and A4 are remained. At
this stage the algorithm finds that A4 is not schedulable, hence its
priority has to be increased. In the last stage, A4 also becomes
schedulable and since all applications are now schedulable the al-
gorithm succeeds. If at any stage the algorithm cannot find any
schedulable application, meaning that none of the remaining ap-
plications can tolerate the other ones to have higher priorities, the
algorithm fails.

In Audsley’s priority assignment algorithm [11] to find a solution
(if any) at mostm(m+1)/2 schedulability tests will be performed
where m is the number of tasks to be prioritized. Similarly, in
our algorithm to find a solution (if any), in the worst case at each
stage only one application is schedulable and is assigned a priority.
In the next stage the schedulability of all the remaining applica-
tions has to be performed again. In this case after the algorithm
is finished, the schedulability test for the applications with priority
m,m−1, . . . , 2, 1 has been performedm,m−1, . . . , 2, 1 times re-
spectively, and hence the maximum number of schedulability tests
is m(m+ 1)/2 where m is the number of applications to be prior-
itized.

LEMMA 2. The priority assignment algorithm under the pro-
posed resource sharing structure assumptions is optimal, i.e., if the
algorithm fails to assign unique priorities any hypothetically op-
timal algorithm under the same scheduling assumptions will also
fail.

PROOF. We assume that the priority assignment algorithm at
some stage fails. Lets assume that it fails at stage f (1 < f ≤ m
where m is the number of applications), i.e., no schedulable appli-
cation was found among the remaining unschedulable ones at stage
f . We assume that at stage f − 1 k applications were schedulable,
thus at stage f there are m−k applications that became unschedu-
lable with the priority level k (assuming the lowest priority level
as zero). By algorithm definition, at stage f for each application
in the set m− k applications, the algorithm assumes that other ap-
plications in this set have higher priorities, even though they have

been assigned the same priority level as k. Therefore, increasing
their priority level will not make them schedulable. On the other
hand, at stage f − 1, these m − k tasks with priority levels lower
than that of k were unschedulable so that the algorithm continued
to stage f . Therefore, lowering the priority of these m − k tasks
also will not make them schedulable. This means that, no other al-
gorithm that has the same system assumptions can assign a priority
level to these set of applications to make the system schedulable.
This finishes the proof.

7. SCHEDULABILITY TESTS EXTENDED
WITH PREEMPTION OVERHEAD

If the tasks allocated on a processor do not share resources, since
any job can preempt at most one job during its execution, it suffices
to inflate the worst-case execution time of each task by one pre-
emption overhead [14]. This type of preemption which originates
from different priority levels of tasks is common under all synchro-
nization protocols discussed in this paper, hence, we assume that
this overhead is already inflated in the worst-case execution times.
When tasks share local resources under the control of a uniproces-
sor synchronization protocol, e.g., PCP, an additional preemption
overhead has to be added to the worst-case execution times. We as-
sume that the worst-case execution times are also inflated with this
preemption overhead as the synchronization protocols under par-
titioned scheduling algorithms generally assume reusing a unipro-
cessor synchronization protocol for handling local resources.

However, when tasks share global resources, depending on the syn-
chronization protocol used, the preemption overhead may not be
the same for different protocols.

7.1 Local Preemption Overhead
Under a suspend-based protocol, e.g., MSOS-Priority, MPCP,
whenever a task τi requests a global resource if the resource is
locked by a task in a remote processor (application), τi suspends.
While τi is suspending, lower priority tasks can execute and
request global resources as well. Later on when τi is resumed and
finishes using the global resource, it can be preempted by those
lower priority tasks when they are granted access to their requested
global resources. Each lower priority task τl can preempt τi up
to dTi/TlenGl times. On the other hand τl cannot preempt τi
more than nGi + 1 times. Thus, τi can be preempted by any lower
priority task τl at most min{nGi + 1, dTi/TlenGl } times.

Task τi may also experience extra preemptions from higher priority
tasks requesting global resources. Whenever a higher priority task
τh requests a global resource which is locked by remote tasks, it
suspends and thus τi has the chance to execute. When τh is granted
access to the resource it will preempt τi. This may happen up to
dTi/ThenGh times.

Thus, the total number of extra preemptions that a task τi may expe-
rience from local tasks, because of suspension on global resources,
is denoted by Lpreemi and is calculated as follows:

Lpreemi =
∑
ρl<ρi

min{nGi + 1, dTi/TlenGl }

+
∑
ρh>ρi

dTi/ThenGh .
(20)

The preemption overhead in Equation 20 is due to suspension of
tasks while they are waiting for global resources. Spin-based proto-
cols as well as OMLP do not suffer from this preemption overhead



at all as they do not let a task suspend while waiting for a global
resource.

7.2 Remote Preemption Overhead
Besides the preemption overhead a task τi may incur from local
tasks, it may incur preemption overhead propagated from tasks on
remote processors/applications. Under a synchronization protocol,
when a task τr is allowed to be preempted while it is using a global
resource Rq , i.e., τr is within a gcs, the preemption overhead will
make the critical section longer which in turn makes remote tasks
wait longer forRq . The more preemptions τr can experience within
a gcs the more remote preemption overhead it will introduce to
the remote tasks. FMLP, OMLP and MSOS-Priority do not let a
task using a global resource be preempted, i.e., tasks execute non-
preemptively within a gcs, therefore they are free from remote pre-
emption overhead. However, under MPCP and MSOS-FIFO a task
within a gcs can be preempted by other tasks within gcs es and thus
remote preemption overhead has to be included in their schedula-
bility tests. Under MPCP, a task within a gcs can be preempted by
gcs es from both lower priority and higher priority tasks [4]. Under
MSOS-FIFO a task within a gcs can only be preempted by higher
priority tasks within their gcs es. Under both MPCP and MSOS-
FIFO a gcs of a task τi in which it accesses a global resource Rq
can be preempted by at most one gcs per each task τj in which it
accesses a global resource other than Rq . This is because the pre-
empting task τj will not have chance to execute and enter another
gcs before τi releases Rq . The reason is that the priority of a task
within a gcs is boosted to be higher than any priority of the local
tasks.

Under MPCP the priority of a gcs of a task τi in which it requests
a global resource Rq is boosted to its remote ceiling which is the
summation of the highest priority of any remote task that may re-
quest Rq and the highest priority in the local processor plus one.
Thus under MPCP, a gcs can be preempted by any gcswith a higher
remote ceiling. Consequently, under MPCP the maximum number
of preemptions a gcs of τi may incur, equals to the maximum num-
ber of tasks containing a gcs with a higher remote ceiling. On the
other hand, under MSOS-FIFO a gcs of τi in which it requests a
global resource Rq can only be preempted by gcs es of higher pri-
ority tasks in which they access a resource other than Rq . Thus,
under MSOS-FIFO the maximum number of preemptions a gcs of
τi, in which it access Rq , may incur equals to the maximum num-
ber of higher priority tasks with a gcs in which they access any
global resource other than Rq .

The length of gcs es has to be inflated by the preemption over-
head they may incur. This means gcs es become longer and under
MSOS-FIFO it leads to longer RHT’s.

8. EXPERIMENTAL EVALUATION
In this section we present our experimental evaluations for compar-
ison of MSOS-Priority to other synchronization protocols under the
fixed priority partitioned scheduling algorithm. We compared the
performance of protocols with regard to the schedulability of pro-
tocols using response time analysis. We have evaluated suspend-
based as well as spin-based protocols. All spin-based synchroniza-
tion protocols perform the same with respect to global resources,
because in all of them, a task waiting for a global resource per-
forms busy wait. Thus the blocking times in those protocols are
the same. We present the results of the spin-based protocols in one
group and represent the protocols by SPIN. In this category we put
MSRP, FMLP (short resources), as well as a version of MSOS-
FIFO in which tasks waiting for global resources perform busy

wait. However, the suspend-based protocols, i.e., MSOS-Priority,
MPCP, FMLP (long resources), OMLP and MSOS-FIFO perform
differently in different situations and thus we present their perfor-
mance individually.

8.1 Experiment Setup
We determined the performance of the protocols based on the
schedulability of randomly generated task sets under each protocol.
The tasks within each task set allocated on each processor were
generated based on parameters as follows. The utilization of
each task was randomly chosen between 0.01 and 0.1, and its
period was randomly chosen between 10ms and 100ms. The
execution time of each task was calculated based on its utilization
and period. For each processor, tasks were generated until the
utilization of the tasks reached a cap or a maximum number of 30
tasks were generated. The utilization cap was randomly chosen
from {0.3, 0.4, 0.5}.

The number of global resources shared among all tasks was 10.
The number of critical sections per each task was randomly chosen
between 1 and 6. The length of each critical section was randomly
chosen between 5µs and 225µs with steps of 20µs, i.e., 5, 25, 45,
etc.

Preemption overhead: The preemption overhead that we chose
was inspired by measurements done by Bastoni et al. in [13]
where they measured the cache-related preemption overhead
as a function of WSS of tasks. To cover a broad range of
overhead, i.e., from very low (or no) per-preemption overhead
to very high per-preemption overhead, for each task set the
per-preemption overhead was randomly chosen (in µs) from
{0, 20, 60, 140, 300, 620, 1260, 2540}. This covers preemption
overhead for tasks with very small WSS, e.g., 4 kilobytes, as well
as tasks with very large WSS, e.g., around 4 megabytes.

We generated 1 million task sets. In the generated task sets the
number of task sets were between 115 and 215 for each setting,
where the number of settings was 6336. We repeated the experi-
ments three times and we did not observe any significant difference
in the obtained results. This means that 1 million randomly gener-
ated samples can be representative for our settings.

8.2 Results
The results of our experiments show that different synchronization
protocols can be more sensitive to some factors than others, mean-
ing that depending on different settings some of the protocols may
perform better.

When ignoring preemption overhead, MSOS-Priority, MPCP and
SPIN mostly perform significantly better than other protocols.
MSOS-Priority performs better than both MPCP and SPIN as
the number of processors and (or) the length of critical sections
(Figures 3(a) and 3(b))is increased. However, increasing the
utilization cap and (or) the number of critical sections per task
punishes MSOS-Priority more than MPCP and SPIN. Figures 3(c)
and 3(d) show the schedulability performance of the protocols
against the length of critical sections and number of processors
respectively, when the preemption overhead is ignored. As shown
in Figures 3(d), OMLP is less sensitive to increasing the number
of critical sections as it drops more smoothly compared to the rest
of the protocols. For 6 critical sections per task, OMLP performs
better than all protocols except MSOS-Priority and SPIN.

As one can expect, the performance of the suspend-based protocols
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(a) Performance of synchronization protocols against the length of
critical sections. Number of processors=12, utilization cap=0.3,
number of critical sections per task=3.
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(b) Performance of synchronization protocols against the number
of processors. Utilization cap=0.3, number of critical sections per
task=3, length of critical sections=85 µs.
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(c) Performance of synchronization protocols against the utiliza-
tion cap. Number of processors=8, number of critical sections per
task=3, length of critical sections=45 µs.
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(d) Performance of synchronization protocols against the number
of critical sections per task. Number of processors=12, utilization
cap=0.3, length of critical sections=45 µs.

Figure 3: Performance of synchronization protocols when the preemption overhead is ignored.
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Figure 4: Performance of synchronization protocols as the per-
preemption overhead increases. Number of processors=12, uti-
lization cap=0.3, number of critical sections per task=3, length
of critical sections=25 µs.

decreases as the preemption overhead is increased (Figure 4). De-
spite of the value of per-preemption overhead, MSOS-Priority al-
most always outperforms all other suspend-based protocols. Only
in some cases where the preemption overhead is ignored, MSOS-
Priority performs similar to MPCP. For lower per-preemption over-
head, e.g., less than 140µs, in most cases where the number of
processors and (or) the length of critical sections is relatively large
MSOS-Priority outperforms spin-based protocols. However, in this
paper we have not considered system dependant overhead, e.g.,
overhead of queue management. We believe that, similar to the
preemption overhead, the system overhead will favor spin-based
protocols significantly, and for relatively large amount of system
overhead the suspend-based protocols may hardly (if not at all) out-
perform spin-based protocols, specially when the lengths of critical
sections are relatively short.

Among the suspend-based protocols MPCP drops sharply against

preemption overhead already from very low per-preemption over-
head followed by MSOS-FIFO. The reason that MPCP and MSOS-
FIFO are more sensitive to preemption overhead is that they are the
only protocols that allow preemption of a task while it is using a
global resource, i.e., the task is within a gcs. Hence, only under
these two protocols tasks may experience remote preemption over-
head which according to the results seems to be expensive.

The local preemption overhead regarding suspension is common
for all suspend-based protocols. As shown in Figure 4, when the
preemption overhead is very low, e.g., 20 µs per-preemption, the
suspend-based protocols are affected less. MPCP does not survive
as the per-preemption overhead reaches 60µs and MSOS-FIFO
does not survive either as the preemption overhead reaches 140µs.
For per-preemption overhead around 300µs only MSOS-Priority
survives and when the per-preemption overhead reaches 620µs
none of the suspend-based protocols survive.

So far we have seen that MSOS-Priority generally outperforms
suspend-based protocols and in many cases it even performs bet-
ter than spin-based protocols. However, it has not been clear how
effective the priority assignment algorithm (Section 6) is and how
much it helps the MSOS-Priority protocol to perform better. To
investigate the effectiveness of the priority assignment algorithm
we performed experiments in which we compared the performance
of MSOS-Priority where the priorities of applications are assigned
by the priority assignment algorithm to the performance of MSOS-
Priority where the priorities were assigned randomly. The results
showed that the priority assignment algorithm increases the schedu-
lability of MSOS-Priority significantly. As shown in Figure 5, the
priority assignment algorithm boosts the performance of MSOS-
Priority significantly specially when the number of applications
(processors) is increased. The reason is that a larger number of ap-
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Figure 5: Performance of MSOS-Priority where priorities of
the applications are assigned by the priority assignment algo-
rithm against its performance where the priorities are assigned
randomly. Utilization cap=0.3, number of critical sections per
task=3, length of critical sections=85 µs.

plications gives the priority assignment algorithm more flexibility
when it assigns priorities to the applications.

9. CONCLUSION
In this paper, we have presented a new alternative of our previously
presented synchronization protocol MSOS for independently-
developed real-time applications on multi-cores [3]. MSOS was
originally developed for applications that are not prioritized on ac-
cessing shared resources. In this paper we extend MSOS to support
prioritized applications. In the new MSOS, called MSOS-Priority,
we have extended the notion of maximum Resource Wait Time
(RWT) as well as Maximum Application Locking Time (MALT)
which have to be functions of arbitrary time intervals. Moreover
we have proposed an optimal priority assignment algorithm to
assign priorities to applications under MSOS-Priority.

We have performed an extensive experimental evaluation where the
results showed that MSOS-Priority, when combined with the prior-
ity assignment algorithm, mostly performs significantly better than
the existing suspend-based synchronization protocols under parti-
tioned scheduling. In many cases it also outperforms spin-based
protocols as well. Beside the good performance of MSOS-Priority,
it offers the possibility of using it in open systems on a multi-core
platform where an application is allocated on a dedicated core.
An admission control program can perform better by using the
interface-based global scheduling offered by MSOS-Priority since
most of the complex calculations in the schedulability analysis of
applications is performed off-line. Finally, MSOS generally offers
real-time applications to be developed and analyzed in isolation and
in parallel.

The schedulability analysis of MSOS-Priority can be improved by
tightening of the calculations of the local blocking terms as well as
MALT’s, e.g., by using actual critical section lengths rather than us-
ing a multiple of the longest critical sections. Future work includes
tightening the blocking terms. All the existing locking protocols
mentioned in this paper require shared memory platforms. Another
future work is to develop synchronization protocols for real-time
applications on multi-cores by means of message passing instead
of shared memory synchronization.
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